OF4949, NEW INHIBITORS OF AMINOPEPTIDASE B

III. BIOSYNTHESIS

Susumu Sano, Mitsuhiro Ueno, Kaoru Katayama, Teruya Nakamura and Akira Obayashi

Central Research Laboratories, Takara Shuzo Co., Ltd., 3-4-1 Seta, Otsu, Shiga 520-21, Japan

(Received for publication March 15, 1986)

To elevate production of OF4949 by *Penicillium rugulosum* OF4949 and to elucidate the pathway of its biosynthesis, mutants were selected on the basis of their resistance to growth inhibition by phenylalanine analogs. A mutant resistant to *m*-fluorophenylalanine, strain No. M414, had 3-fold the production of the parent. In a study of the biosynthesis of OF4949-I and II, several ¹⁴C-labeled compounds were examined as possible precursors of OF4949. L-[¹⁴C]Tyrosine and L-[¹⁴C]asparagine were incorporated efficiently. Most of the radioactivity of L-[¹⁴C]tyrosine was found in the 4-methylisodityrosine (**B**₂) or isodityrosine (**B**₁) moieties, and that of L-[¹⁴C]asparagine was in the β -hydroxyasparagine moiety.

The OF4949 complex, which inhibits aminopeptidase **B**, was obtained from the culture broth of *Penicillium rugulosum* OF4949. It consists of at least four components, the major ones being OF4949-I and II.¹⁾ Component I can be divided into two moieties, 4-methylisodityrosine (\mathbf{B}_2) and β -hydroxy-asparagine, as can II, into isodityrosine (\mathbf{B}_1) and β -hydroxyasparagine.²⁾ The structures of \mathbf{B}_1 and \mathbf{B}_2 suggested to us that they might be biosynthesized from two moles of aromatic amino acids, L-tyrosine or L-phenylalanine. To elevate the production of these inhibitors, and to elucidate the pathway of their biosynthesis, we decided to try to find a mutant resistant to growth inhibition by phenylalanine or tyrosine analogs. To study the biosynthetic origin of these inhibitors, we examined the incorporation and distribution of several ¹⁴C-labeled compounds into I and II in replacement culture.

Here, we report on the biosynthesis of OF4949-I and II.

Materials and Methods

Derivation of Mutant

Conidia of *P. rugulosum* OF4949 in sterile 0.05 M Tris - malate buffer, pH 6.0, (10⁶ conidia/ml) were exposed to *N*-methyl-*N*-nitro-*N*-nitrosoguanidine (NTG) at the concentration of 400 μ g/ml for 40 minutes with shaking. After this treatment, the conidia were spread on a CZAPEK's agar plate containing 10 μ g/ml *m*-fluorophenylalanine (MFP) or 100 μ g/ml *p*-fluorophenylalanine (PFP), and the plates were incubated at 27°C for 6 days. Each colony was cultured for 6 days in a medium that contained glucose 3.0% and soybean meal 1.5%, and then checked for productivity by an enzyme inhibition assay.¹⁰ The minimum inhibitory concentration against *P. rugulosum* OF4949 of MFP was 2.0 μ g/ml and that of PFP, 31.2 μ g/ml.

Conditions of Replacement Culture

Strain No. M414, one of the MFP-resistant mutants, was used for the biosynthetic studies. Seed cultures were grown in medium containing maltose 7.0% and Bacto Soytone 1.0%, at 27°C for 7 days on a rotary shaker at 220 rpm. The mycelia were harvested by filtration, washed three times with sterile physiological saline, and homogenized in a Hiscotron (Nippon Seimitsu Co.). The mycelial homogenate (300 mg/ml mycelia, dry weight) was resuspended in a chemically defined medium con-

sisting of maltose 2.0%, NH₄NO₃ 1.0%, KH₂PO₄ 0.05% and MgSO₄·7H₂O 0.05% (pH 5.0). Replacement culture was done with vigorous shaking at 30°C for 24~72 hours.

Incorporation of Radioactivity into OF4949

¹⁴C-Labeled compounds (0.5 μ Ci) were added to the replacement culture at the time of inoculation. After 24 hours of incubation, the culture broth was extracted with MeOH and chromatographed on a Diaion HP-20 column with 50% EtOH. Fractions containing the OF4949 complex were concentrated and chromatographed on Toyo No. 50 filter paper with PrOH - 28% NH₄OH (2:1) or 0.05 M sodium acetate - EtOH (2:1). OF4949-I and II were detected by their color reaction with ninhydrin.

Degradation of 14C-OF4949

The area containing I or II labeled with a ¹⁴C-precursor was cut out of the paper and extracted in a small amount of water. The extract was hydrolyzed with 6 N HCl at 100°C for 15 hours. The hydrolysate was put on Toyo No. 50 filter paper and developed with PrOH - 28% NH₄OH (2:1). Each spot of the hydrolyzed products, **A**, **B**₁ and **B**₂, was cut out from the chromatogram, and the radioactivity was counted.

Labeled Compounds

L-[U-1⁴C]Aspartate, L-[U-1⁴C]asparagine, L-[U-1⁴C]glutamate, [U-1⁴C]glycine, L-[U-1⁴C]soleucine, L-[U-1⁴C]threonine, L-[U-1⁴C]phenylalanine, L-[U-1⁴C]tyrosine (each 10 mCi/m atom of carbon labeling), L-[U-1⁴C]malate (22 mCi/mmol), and [2.3-1⁴C]succinate (57 mCi/mmol) were purchased from Amersham Japan. [U-1⁴C]Fumarate (80~100 mCi/mmol) was purchased from Commissariat a l'Energie Atomique, France.

Measurement of Radioactivity

A liquid scintillation counter (Beckman LS3801) was used to measure radioactivity. Radiochromatograms were scanned with a paper chromatogram scanner (Aloka JPC-213) and a thin-layer chromatogram scanner (Aloka JPC-203).

Results

Strain Improvement

The best mutant strain, No. M414, isolated as a single colony, accumulated 58.8 μ g/ml OF4949, about three times the accumulation of the parent (Table 1). The mutant could grow on agar with 20 μ g/ml MFP. Maximum production of this strain was 125 μ g/ml when cultured with a modified production medium¹⁾ with high aeration.

Biosynthetic Studies

Various amino acids and organic acids were incubated with the mycelial homogenate for 72 hours. Among the amino acids tested, L-aspartate, L-asparagine, L-glutamate, L-isoleucine, glycine, L-phenylalanine and L-tyrosine stimulated production (Table 2). Addition of organic acids of the tricarboxylic acid cycle also stimulated production.

The incorporation of ¹⁴C-labeled compounds into OF4949 was examined. A typical paper chromatogram of radioactive I and II isolated from culture broth is shown in Fig. 1. Of the radioactive amino acids and organic acids tested, L-[U-¹⁴C]tyrosine was most efficiently incorporated into I and II, followed by L-[U-¹⁴C]asparagine and L-[U-¹⁴C]phenylalanine (Table 3). Less L-[U-¹⁴C]asparate, [U-¹⁴C]glycine, L-[U-¹⁴C]isoleucine, and [U-¹⁴C]fumarate were incorporated than the labeled L-asparagine. L-[U-¹⁴C]Glutamate, L-[U-¹⁴C]malate and [2.3-¹⁴C]succinate were hardly incorporated at all.

To examine the distribution of radioactivity in I and II, OF4949 labeled with ¹⁴C-amino acid pre-

Table 1. Productivity of OF4949 of analog-resistant mutants.

Strain No.	Character	OF4949 (μg/ml)
OF4949	Parent	17.4
M158	MFP ^r	27.9
M206	MFP ^r	29.8
M287	MFP ^r	27.2
M300	MFP ^r	29.4
M304	MFP ^r	30.9
M414	MFP ^r	58.8
P85	$\mathbf{PFP^{r}}$	25.8
P86	PFP ^r	24.5
P87	PFP ^r	25.3

MFP^r: Resistant to *m*-fluorophenylalanine.

PFP^r: Resistant to *p*-fluorophenylalanine.

Table 3. Incorporation of ¹⁴C-labeled substrate into OF4949-I and II.

Labeled compound	Efficiency (% incorporation)*			
	I	II	I + II	
[U-14C]Fumarate	0.3	1.4	1.7	
L-[U-14C]Malate	0.5	0.4	0.9	
[2.3-14C]Succinate	0.1	0.3	0.4	
L-[U-14C]Asparagine	3.0	3.6	6.6	
L-[U-14C]Aspartate	1.3	1.9	3.2	
L-[U-14C]Glutamate	0.6	0.5	1.1	
[U-14C]Glycine	1.5	1.4	2.9	
L-[U-14C]Threonine	0.4	0.4	0.8	
L-[U-14C]Isoleucine	1.7	0.9	2.6	
L-[U-14C]Phenylalanine	2.0	2.3	4.3	
L-[U-14C]Tyrosine	4.2	7.3	11.5	

Compounds (0.5 μ Ci/ml) labeled with ¹⁴C were added to chemically defined medium with strain No. M414 mycelium homogenate at 30°C for 24 hours.

 Percentage incorporation, (Total dpm of [¹⁴C]-OF4949-I or II)/(Total dpm of [¹⁴C]compound added) × 100.

	OF4949 production (µg/ml)			
Added (10 mm)	Strain No. OF4949	Strain No. M414		
Amino acid				
Glycine	3.0	16.2		
L-Alanine	2.5	11.6		
L-Valine	2.4	13.5		
L-Leucine	2.2	9.7		
L-Isoleucine	3.5	17.6		
L-Serine	2.5	9.5		
L-Threonine	2.4	9.7		
L-Phenylalanine	3.4	17.2		
L-Tyrosine	3.7	16.4		
L-Tryptophan	2.6	7.0		
L-Cysteine	1.5	3.0		
L-Methionine	1.9	6.2		
L-Proline	3.2	15.7		
L-Aspartate	3.8	20.3		
L-Asparagine	3.4	17.2		
L-Glutamate	4.3	19.2		
L-Glutamine	2.7	11.7		
L-Histidine	2.9	12.1		
L-Lysine	2.7	9.5		
L-Arginine	2.8	11.7		
Casamino acid	3.4	16.5		
Organic acid				
Acetate	4.2	14.4		
Pyruvate		15.7		
Propionate	3.1	14.1		
Butyrate	0.6	2.5		
Citrate	4.3	14.1		
Oxalacetate		14.1		
L-Malate	4.3	20.0		
Maleate	4.1	15.3		
Fumarate	3.9	20.0		
Succinate	4.5	16.4		
α -Ketoglutarate		16.0		
None	1.9	9.2		

Table 2. Effects of amino acids or organic acids on OF4949 production in replacement culture with chemically defined medium.

cursors was degraded by acid hydrolysis. $L-[U^{-14}C]$ Tyrosine was incorporated mainly into the **B** moiety, whereas most of the radioactivity derived from $L-[U^{-14}C]$ asparagine appeared in the **A** moiety (Table 4).

During flask culture of strain No. M414, the ratio of I to II produced in the early maximum production phase (Day 12) was about 1:1.5; that of the late maximum production phase (Day 18) was 2.5:1. This suggested that the biosynthetic methylation of a phenolic hydroxyl group of II may give I. So, [14C]I and [14C]II obtained when L-[U-14C]tyrosine was used were isolated and added to replacement culture. The radioactivity of the [14C]I was incorporated only negligibly into II, whereas about 30% of the radioactivity of II was found in I after 18 hours of incubation (Table 5).

Fig. 1. Paper chromatography of [¹⁴C]OF4949 labeled with [¹⁴C]tyrosine (a) or with [¹⁴C]asparagine (b). Radioactivity was monitored with a paper chromatogram scanner (Aloka JPC-213). OF4949-I and II were detected by their color reaction with ninhydrin.

Table 4. Distribution of radioactivity among the degradation products of [14C]OF4949 labeled with different 14C-labeled precursors.

Source of	[¹⁴ C]- %	% Incor-	% Distribution of ¹⁴ C ^b			Recovery of
radioactivity	OF4949	poration ^a	А	\mathbf{B}_1	\mathbf{B}_2	from OF4949°
L-[<i>U</i> - ¹⁴ C]-	I	3.3	5.9	16.4	77.7	70.5
Tyrosine	II	7.2	8.3	91.7		69.5
L-[<i>U</i> - ¹⁴ C]-	Ι	2.1	84.7	14.6	0.7	73.4
Asparagine	II	3.3	89.2	10.8		68.5

^a (Total dpm of [¹⁴C]OF4949-I or II)/(Total dpm of ¹⁴C-labeled compound added) \times 100.

^b (Total dpm of ¹⁴C-labeled degradation product)/(Total dpm of $[^{14}C]A + [^{14}C]B \times 100$.

° (Total dpm of $[{}^{14}C]A + [{}^{14}C]B$)/(Total dpm of $[{}^{14}C]OF4949$ added)×100.

Table 5.	Incorporation	of [14C]OF4949-II	into OF4949-I.
----------	---------------	-------------------	----------------

[14C]OF4949 added		[¹⁴ C]OF4949 yielded		Recovery of radioactivity
Ι	II	I	п	
85.1	14.9	88.4	11.6	70.8
6.4	93.6	33.4	66.6	79.3

(Total dpm of [¹⁴C]OF4949-I or II)/(Total dpm of [¹⁴C]OF4949-I+II) \times 100.

^b (Total dpm of [¹⁴C]OF4949 yielded)/(Total dpm of [¹⁴C]OF4949 added)×100.

Discussion

The efficiency of L-tyrosine incorporation into I and II and its distribution pattern in these inhibitors suggested that the B moiety of I and II is derived from L-tyrosine. Isodityrosine of plant cell walls is biosynthesized by oxidative coupling *via* peroxidase-generated free radicals with two tyrosine units.^{3,4)} Similarly, ascaris cuticle contains isotrityrosine, an oxidatively coupled trimer of tyrosine Fig. 2. Paper chromatography of $[{}^{14}C]erythro-\beta$ -hydroxyasparagine labeled with $[{}^{14}C]$ asparagine.

The culture broth with [¹⁴C]asparagine was extracted with MeOH and passed through a column of Diaion HP-20. The fractions were purified on a Dowex 50W (H⁺) column. The eluate was chromatographed on a Toyo No. 50 filter paper with EtOH - 28% NH₄OH (2:1).

Fig. 3. Tentative pathway for biosynthesis of OF4949-I and II.

with one biphenyl and one diphenyl ether bridge.⁵⁾ It seems likely that the **B** moiety of I and II is formed from two molecules of tyrosine by the action of a peroxidase.

The L-erythro- β -hydroxyasparagine moiety may be biosynthesized by one of the following suggested mechanisms. (1) The moiety may be derived from β -hydroxyasparate by ammonia ligation. (2) L-Asparagine may be β -oxygenated to give β -hydroxyasparagine. (3) β -Hydroxyasparagine may be synthesized from another pathway. Investigations of the biosynthesis of L-erythro- β -hydroxyaspartate showed that this amino acid is synthesized from one molecule of glycine and one molecule of glyoxalate by enzymatic condensation by 3-hydroxyaspartate aldolase (EC 4.1.3.14),^{6,7)} or from dihydroxyfumarate by transamination and hydration with aspartate aminotransferase (EC 2.6.1.1).⁸⁾ However, the low incorporation of [¹⁴C]glycine and the ¹⁴C-labeled organic acids of the tricarboxylic acid cycle into OF4949 suggested to us that β -hydroxyaspartate is not a direct precursor of the Lerythro- β -hydroxyasparagine moiety. The high rate of uptake and the distribution of [14C]asparagine indicated that the L-erythro- β -hydroxyasparagine moiety could be derived from L-asparagine. The formation of β -hydroxyasparagine from L-asparagine can be explained by the assumption that β hydroxylation of L-asparagine occurs. In preliminary experiments, a few radioactive peaks corresponding to L-erythro- β -hydroxyasparagine derived from [14C]asparagine were detected in culture broth by paper chromatography (Fig. 2). Similar aliphatic oxygenation systems have been reported in microorganisms and in animals involving 6-N-trimethyl-L-lysine hydroxylase,^{θ ,10)} 4-trimethylbutyric acid (γ -butyrobetaine) hydroxylase (EC 1.14.11.1),^{11,12} collagen prolyl-4-hydroxylase (EC 1.14.11.2),^{13,14} and collagen lysyl hydroxylase (EC 1.14.11.4);^{15,16}) these are all dioxygenases dependent on α -ketoglutarate. In the experiment reported here, the enhancement of OF4949 production by the organic acids in the tricarboxylic acid cycle suggests that such a system is involved.

Furthermore, the ratio of I to II produced during culture and the incorporation of ¹⁴C-labeled II into I suggested that *O*-methylation of the phenolic hydroxyl group may occur after cyclization. *O*-Methyl transferases catalyzing the transmethylation of phenolic hydroxyl groups are widely distributed in nature.^{17~10)}

These results suggested to us the tentative biosynthetic pathway shown in Fig. 3.

Acknowledgments

We thank Dr. OSAMU TANABE and our co-workers of Takara Shuzo Co,, Ltd., for their encouraging advice and valuable help.

References

- SANO, S.; K. IKAI, H. KURODA, T. NAKAMURA, A. OBAYASHI, Y. EZURE & H. ENOMOTO: OF4949, new inhibitors of aminopeptidase B. I. Taxonomy, fermentation, isolation and characterization. J. Antibiotics 39: 1674~1684, 1986
- SANO, S.; K. IKAI, K. KATAYAMA, K. TAKESAKO, T. NAKAMURA, A. OBAYASHI, Y. EZURE & H. ENOMOTO: OF4949, new inhibitors of aminopeptidase B. II. Elucidation of structure. J. Antibiotics 39: 1685~1696, 1986
- FRY, S. C.: Isodityrosine, a new cross-linking amino acid from plant cell wall glycoprotein. Biochem. J. 204: 449~455, 1982
- COOPER, J. B. & J. E. VARNER: Insolubilization of hydroxyproline-rich cell wall glycoprotein in aerated carrot root slices. Biochem. Biophys. Res. Commun. 112: 161~167, 1983
- FUJIMOTO, D.; K. HORIUCHI & M. HIRAMA: Isotrityrosine, a new crosslinking amino acid isolated from ascaris cuticle collagen. Biochem. Biophys. Res. Commun. 31: 637~643, 1981
- KORNBERG, H. L. & J. G. MORRIS: β-Hydroxyaspartate pathway: A new route for biosyntheses from glyoxylate. Nature (London) 197: 456~457, 1963
- GIBBS, R. G. & J. G. MORRIS: Assay and properties of β-hydroxyaspartate aldolase from *Micrococcus* denitrificans. Biochim. Biophys. Acta 85: 501 ~ 503, 1964
- 8) JENKINS, W. T.: Preparation of the diastereomers of β -hydroxy-L-aspartate with pig heart aspartate aminotransferase. Anal. Biochem. 93: 134~138, 1979
- 9) STEIN, R. & S. ENGLARD: The use of a tritium release assay to measure 6-N-trimethyl-L-lysine hydroxylase activity: Synthesis of 6-N-[3-³H]trimethyl-DL-lysine. Anal. Biochem. 116: 230~236, 1981
- HULSE, J. D.; S. R. ELLIS & L. M. HENDERSON: Carnitine biosynthesis. β-Hydroxylation of trimethyllysine by an α-ketoglutarate-dependent mitochondrial dioxygenase. J. Biol. Chem. 253: 1654~1659, 1978
- LINDSTEDT, G.: Hydroxylation of *i*-butyrobetaine to carnitine in rat liver. Biochemistry 6: 1271~1282, 1967
- LINDSTEDT, G. & S. LINDSTEDT: Cofactor requirements of *γ*-butyrobetaine hydroxylase from rat liver. J. Biol. Chem. 245: 4178~4186, 1970
- RHOADS, R. E. & S. UDENFRIEND: Purification and properties of collagen proline hydroxylase from newborn rat skin. Arch. Biochem. Biophys. 139: 329~339, 1970
- 14) MYLLYLA, R.; L. M. SCHUBOTZ, U. WESER & K. I. KIVIRIKKO: Involvement of superoxide in the prolyl and lysyl hydroxylase reactions. Biochem. Biophys. Res. Commun. 89: 98~102, 1979
- 15) KIVIRIKKO, K. I.; K. SHUDO, S. SAKAKIBARA & D. J. PROCKOP: Studies on protocollagen lysine hydroxyl-

ase. Hydroxylation of synthetic peptides and the stoichiometric decarboxylation of α -ketoglutarate. Biochemistry 11: 122~129, 1972

- 16) PETERKOFSKY, B. & R. ASSAD: Localization of chick embryo limb bone microsomal lysyl hydroxylase at intracisternal and intramembrane sites. J. Biol. Chem. 254: 4714~4720, 1979
- JACKSON, R. L. & W. LOVENBERG: Isolation and characterization of multiple forms of hydroxyindole-O-methyltransferase. J. Biol. Chem. 246: 4280~4285, 1971
- 18) COWARD, J. K.; E. P. SLISZ & F. Y.-H. WU: Kinetic studies on catechol O-methyltransferase. Product inhibition and the nature of the catecol binding site. Biochemistry 12: 2291 ~ 2297, 1973
- 19) POULTON, J. E.; K. HAHLBROCK & H. GRISEBACH: O-Methylation of flavonoid substrates by a partially purified enzyme from soybean cell suspension cultures. Arch. Biochem. Biophys. 180: 543 ~ 549, 1977